Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(12): 1047-1061, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814360

RESUMO

Anthracnose caused by Colletotrichum gloeosporioides critically threatens the growth and commercial cultivation of Sarcandra glabra . However, the defence responses and underlying mechanisms remain unclear. Herein, we aimed to investigate the molecular reprogramming in S. glabra leaves infected with C. gloeosporioides . Leaf tissues at 0, 24 and 48h post-inoculation (hpi) were analysed by combining RNA sequencing and Tandem Mass Tag-based liquid chromatography with tandem mass spectrometry. In total, 18 441 and 25 691 differentially expressed genes were identified at 24 and 48hpi compared to 0hpi (uninoculated control), respectively. In addition, 1240 and 1570 differentially abundant proteins were discovered at 24 and 48hpi compared to 0hpi, respectively. Correlation analysis revealed that transcription and translation levels were highly consistent regarding repeatability and expression. Analyses using databases KEGG and iPATH revealed tricitric acid cycle, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis were induced, whereas photosynthesis and tryptophan were suppressed. Enzymatic activity assay results were consistent with the upregulation of defence-related enzymes including superoxide dismutases, catalases, peroxidases and chitinases. The transcriptome expression results were additionally validated by quantitative real-time polymerase chain reaction analyses. This study provides insights into the molecular reprogramming in S. glabra leaves during infection, which lay a foundation for investigating the mechanisms of host-Colletotrichum interactions and breeding disease-resistant plants.


Assuntos
Colletotrichum , Transcriptoma , Transcriptoma/genética , Colletotrichum/genética , Proteoma/genética , Melhoramento Vegetal
2.
Front Plant Sci ; 13: 822829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222482

RESUMO

Bacterial soft rot of banana, caused by Dickeya zeae, is spreading rapidly in important banana growing areas in China and seriously threatens banana production. In this study, we sequenced the high-quality complete genomes of three typical banana strains, MS1 (size: 4,831,702-bp; genome coverages: 538x), MS_2014 (size: 4,740,000-bp; genome coverages: 586x) and MS_2018 (size: 4,787,201-bp; genome coverages: 583x), isolated in 2009, 2014, and 2018, respectively. To determine their genomic and phenotypic diversity with respect to their hosts of origin, they were compared with other D. zeae strains, including another representative banana strain MS2 from China. The sequenced strains were similar in utilization of carbon source and chemical substrates, and general genomic features of GC content, and tRNA and rRNA regions. They were also conserved in most virulence determinants, including gene-encoding secretion systems, plant cell wall degrading enzymes, and exopolysaccharides. We further explored their genomic diversity in the predicted genomic islands (GIs). These GIs were rich in integrases and transposases, where some genomic dissimilarity was observed in the flagellar gene cluster and several secondary metabolite gene clusters. Different constituents of core biosynthetic modules were found within the bacteriocin and aryl polyene (APE) pigment gene clusters, and the strains from banana showed different phenotypes with respect to antibiosis effects and colony pigmentation. Additionally, clustered regularly interspaced short palindromic repeat (CRISPR) and prophage elements, such as type I-F and III-A CRISPR arrays and an intact prophage of MS1-P5, contributed to bacterial diversity. Phylogenetic tree analysis and genome-genome nucleotide comparison confirmed the genomic divergence among the strains isolated from banana. Considering these characteristics, MS2 and MS_2014 probably diverged later than MS1, while MS_2018 was different and more similar to foreign strains isolated from other hosts in several characteristics. Strain MS_2018 caused severe symptoms on banana varieties previously considered moderately resistant or moderately susceptible, including varieties of Cavendish (Musa AAA) and Plantain (Musa ABB). Our study of genomic and phenotypic diversity raises public attention to the risk of spreading new pathogenic variants within banana growing regions and supports development of predictive strategies for disease control.

3.
Curr Microbiol ; 78(9): 3453-3463, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34263355

RESUMO

Dickeya zeae is a globally important bacterial pathogen that has been reported to cause severe soft rot diseases in several essential food crops, including bananas, rice, maize, and potatoes. Carvacrol, a hydrophobic terpene component, is found in aromatic plants of the Labiatae family and various essential oils. However, little work has been done on its antimicrobial potential against D. zeae. This study aimed to evaluate the antimicrobial activity and the functional mechanism of carvacrol against D. zeae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against D. zeae were 0.1 mg/mL and 0.2 mg/mL, respectively. Carvacrol affected the cell membrane of D. zeae, as revealed by decreased intracellular ATP concentration, nucleic acid leakage, and decreased membrane potential. Scanning electron microscopy (SEM) micrographs confirmed that D. zeae cell membranes were damaged by carvacrol. Furthermore, a significant inhibition of D. zeae swimming motility and biofilm formation was observed following treatments with carvacrol at sub-inhibitory concentrations, indicating a significantly negative effect on these virulence factors. Accordingly, the tissue infection test revealed that carvacrol significantly reduced the pathogenicity of D. zeae. In a pot experiment, inoculated banana seedlings displayed remarkably lesser disease symptoms following treatment with carvacrol, and the control efficiency for banana soft rot was 32.0% at 14 days post-inoculation. To summarize, carvacrol exhibits strong antimicrobial activity against D. zeae and great potential applications in the control of D. zeae-associated crop diseases.


Assuntos
Dickeya , Doenças das Plantas , Cimenos , Enterobacteriaceae
4.
PLoS One ; 15(10): e0240908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33079956

RESUMO

Rice foot rot caused by Dickeya zeae is an important bacterial disease of rice worldwide. In this study, we identified a new strain EC2 from rice in Guangdong province, China. This strain differed from the previously identified strain from rice in its biochemical characteristics, pathogenicity, and genomic constituents. To explore genomic discrepancies between EC2 and previously identified strains from rice, a complete genome sequence of EC2 was obtained and used for comparative genomic analyses. The complete genome sequence of EC2 is 4,575,125 bp in length. EC2 was phylogenetically closest to previously identified Dickeya strains from rice, but not within their subgroup. In terms of secretion systems, genomic comparisons revealed that EC2 harbored only type I (T1SS), typeⅡ (T2SS), and type VI (T6SS) secretion systems. The flagella cluster of this strain possessed specific genomic characteristics like other D. zeae strains from Guangdong and from rice; within this locus, the genetic diversity among strains from rice was much lower than that of within strains from non-rice hosts. Unlike other strains from rice, EC2 lost the zeamine cluster, but retained the clustered regularly interspaced short palindromic repeats-1 (CRISPR-1) array. Compared to the other D. zeae strains containing both exopolysaccharide (EPS) and capsular polysaccharide (CPS) clusters, EC2 harbored only the CPS cluster, while the other strains from rice carried only the EPS cluster. Furthermore, we found strain MS1 from banana, carrying both EPS and CPS clusters, produced significantly more EPS than the strains from rice, and exhibited different biofilm-associated phenotypes. Comparative genomics analyses suggest EC2 likely evolved through a pathway different from the other D. zeae strains from rice, producing a new type of rice foot rot pathogen. These findings emphasize the emergence of a new type of D. zeae strain causing rice foot rot, an essential step in the early prevention of this rice bacterial disease.


Assuntos
Dickeya/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma/métodos , Sistemas de Secreção Bacterianos/genética , China , Dickeya/genética , Dickeya/isolamento & purificação , Genoma Bacteriano , Musa/microbiologia , Filogenia
5.
Curr Microbiol ; 76(1): 100-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30390102

RESUMO

Bacterial soft rot caused by Dickeya zeae MS1 (Erwinia chrysanthemi) is one of the most devastating banana diseases worldwide. However, knowledge of the development and ecological interactions of D. zeae MS1 biofilm is limited. Here, we visualized the development and architecture of D. zeae MS1 biofilm using confocal laser scanning microscopy, and we evaluated the ability of D. zeae MS1 to form biofilms under different environmental conditions (carbon sources, temperatures, pH levels and mineral elements) using a microtiter plate assay. We found that the development of D. zeae MS1 biofilm could be categorized into four phases and that mature biofilm consisted of a highly organized architecture of both bacterial cells and a self-produced matrix of extracellular polysaccharides. Furthermore, sucrose was the most suitable carbon source for supporting the growth of biofilm cells and that 32 °C and pH 7.0 were the most favorable of the temperatures and pH levels examined. Meanwhile, the addition of Ca2+, Fe2+, K+ and Na+ enhanced the formation of biofilm in minimal medium cultures, whereas 2.5 mM Cu2+ and Mn2+ was inhibitory. A better understanding of biofilm formation under different environmental parameters will improve our knowledge of the growth kinetics of D. zeae MS1 biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/metabolismo , Musa/microbiologia , Polissacarídeos Bacterianos/metabolismo , Dickeya chrysanthemi/isolamento & purificação , Meio Ambiente , Microscopia Confocal , Doenças das Plantas/microbiologia , Sacarose/metabolismo
6.
BMC Genomics ; 19(1): 782, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373513

RESUMO

BACKGROUND: Dickeya sp. strain PA1 is the causal agent of bacterial soft rot in Phalaenopsis, an important indoor orchid in China. PA1 and a few other strains were grouped into a novel species, Dickeya fangzhongdai, and only the orchid-associated strains have been shown to cause soft rot symptoms. METHODS: We constructed the complete PA1 genome sequence and used comparative genomics to explore the differences in genomic features between D. fangzhongdai and other Dickeya species. RESULTS: PA1 has a 4,979,223-bp circular genome with 4269 predicted protein-coding genes. D. fangzhongdai was phylogenetically similar to Dickeya solani and Dickeya dadantii. The type I to type VI secretion systems (T1SS-T6SS), except for the stt-type T2SS, were identified in D. fangzhongdai. The three phylogenetically similar species varied significantly in terms of their T5SSs and T6SSs, as did the different D. fangzhongdai strains. Genomic island (GI) prediction and synteny analysis (compared to D. fangzhongdai strains) of PA1 also indicated the presence of T5SSs and T6SSs in strain-specific regions. Two typical CRISPR arrays were identified in D. fangzhongdai and in most other Dickeya species, except for D. solani. CRISPR-1 was present in all of these Dickeya species, while the presence of CRISPR-2 varied due to species differentiation. A large polyketide/nonribosomal peptide (PK/NRP) cluster, similar to the zeamine biosynthetic gene cluster in Dickeya zeae rice strains, was discovered in D. fangzhongdai and D. solani. The D. fangzhongdai and D. solani strains might recently have acquired this gene cluster by horizontal gene transfer (HGT). CONCLUSIONS: Orchid-associated strains are the typical members of D. fangzhongdai. Genomic analysis of PA1 suggested that this strain presents the genomic characteristics of this novel species. Considering the absence of the stt-type T2SS, the presence of CRISPR loci and the zeamine biosynthetic gene cluster, D. fangzhongdai is likely a transitional form between D. dadantii and D. solani. This is supported by the later acquisition of the zeamine cluster and the loss of CRISPR arrays by D. solani. Comparisons of phylogenetic positions and virulence determinants could be helpful for the effective quarantine and control of this emerging species.


Assuntos
Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Genoma Bacteriano , Genômica , Orchidaceae/microbiologia , Sistemas de Secreção Bacterianos/genética , Composição de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , Sequência Conservada , Enterobacteriaceae/metabolismo , Evolução Molecular , Ordem dos Genes , Genes Bacterianos , Genômica/métodos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma
7.
J Asian Nat Prod Res ; 20(8): 807-814, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28691857

RESUMO

An actinomycete strain, H41-55 from sea sediment was identified as Streptomyces antibiotic on the basis of its morphological, physiological and biochemical characteristics as well as 16S rDNA data. A new secondary metabolite, (2S,3R)-N-[3-(formylamino)-2-hydroxybenzoyl]-l-threonine propyl ester (1), together with five known compounds was isolated from fermentation product by use of silica gel and Sephadex LH-20 column chromatography, and preparative RP-C18 HPLC, and identified by HR-TOF-MS and NMR spectra. The cytotoxicities of these isolates against three cancer cell lines and their antifungal activities on Candida albicans were tested. Compounds 1, 3, 5, and 6 displayed moderate cytotoxicity. 5 and 6 showed inhibitory activity on C. albicans.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Micélio/metabolismo , Streptomyces/metabolismo , Antifúngicos/administração & dosagem , Antifúngicos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Fermentação , Humanos , Estrutura Molecular , Micélio/química
8.
Mar Drugs ; 15(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125577

RESUMO

Anandins A (1) and B (2), two rare steroidal alkaloids, were isolated from the fermentative broth of a marine actinobacteria Streptomyces anandii H41-59. The gross structures of the two alkaloids were elucidated by spectroscopic methods including HR-ESI-MS, and NMR. Their absolute configurations were confirmed by single-crystal X-ray diffraction analysis and comparison of their experimental and calculated electronic circular dichroism spectra, respectively. Anandin A exhibited a moderate inhibitory effect against three human cancer cell lines MCF-7, SF-268, and NCI-H460 with IC50 values of 7.5, 7.9, 7.8 µg/mL, respectively.


Assuntos
Alcaloides/química , Esteroides/química , Streptomyces/metabolismo , Alcaloides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Organismos Aquáticos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Esteroides/farmacologia
9.
Phytopathology ; 107(6): 791-799, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28430018

RESUMO

Canna yellow mottle virus (CaYMV) is an important badnavirus infecting Canna spp. worldwide. This is the first report of CaYMV in flowering ginger (Alpinia purpurata) in Hawaii, where it is associated with yellow mottling and necrosis of leaves, vein streaking, and stunted plants. We have sequenced CaYMV in A. purpurata (CaYMV-Ap) using a combination of next-generation sequencing and traditional Sanger sequencing techniques. The complete genome of CaYMV-Ap was 7,120 bp with an organization typical of other Badnavirus species. Our results indicated that CaYMV-Ap was present in the episomal form in infected flowering ginger. We determined that this virus disease is prevalent in Hawaii and could potentially have significant economic impact on the marketing of A. purpurata as cut flowers. There is a potential concern that the host range of CaYMV-Ap may expand to include other important tropical plants.


Assuntos
Alpinia/virologia , Badnavirus/classificação , Doenças das Plantas/virologia , Badnavirus/genética , Badnavirus/isolamento & purificação , Havaí , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
10.
Nat Prod Res ; 31(15): 1819-1824, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28278640

RESUMO

An actinomycete strain 200-09, isolated from a soil sample collected from the coast of Hawaii, USA, was identified as Streptomyces antibioticus on the basis of its morphological, physiological and biochemical characteristics as well as 16S rDNA analysis. A new antimycin-type antibiotic, kitamycin C (1), together with kitamycin A (2), kitamycin B (3), urauchmycin B (4), deisovaleryblastomycin (5) was isolated from a cultured broth of strain 200-09. The structure of the new compound was determined by spectroscopic data, including HR-ESI-MS and NMR. All the compounds exhibited antifungal activities against Candida albicans with MIC of about 25.0 µg mL-1.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Streptomyces antibioticus/química , Antibacterianos/química , Antifúngicos/química , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Candida albicans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
11.
Molecules ; 22(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358337

RESUMO

An actinomycete strain (H12-15) isolated from a sea sediment in a mangrove district was identified as Streptomycesantibioticus on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological, and biochemical characteristics. Two novel benzamido nonacyclic dilactones, namely neoantimycins A (1) and B (2), together with the known antimycins A1ab (3a,b), A2a (4), and A9 (5), were isolated from the culture broth of this strain. Compounds 1 and 2 are the first natural modified ATNs with an unusual benzamide unit. The structures of these new compounds, including their absolute configuration, were established on the basis of HRMS, NMR spectroscopic data, and quantum chemical ECD calculations. Their cytotoxicities against human breast adenocarcinoma cell line MCF-7, the human glioblastoma cell line SF-268, and the human lung cancer cell line NCI-H460 were also tested. All compounds exhibited mild cytotoxic activity. However, Compounds 1 and 2 showed no activity against C. albicans at the test concentration of 1 mg/mL via paper disc diffusion, while the known antimycins showed obvious antifungal activity.


Assuntos
Benzamidas/química , Compostos Orgânicos/química , Streptomyces antibioticus/isolamento & purificação , Benzamidas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sedimentos Geológicos/microbiologia , Humanos , Células MCF-7 , Estrutura Molecular , Compostos Orgânicos/farmacologia , Teoria Quântica , Streptomyces antibioticus/química , Streptomyces antibioticus/crescimento & desenvolvimento
12.
Nat Prod Res ; 30(21): 2460-7, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27379435

RESUMO

A new secondary metabolite, (2S,3R)-l-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((S)-Pro-8- hydroxy-(R)-Ile (3), cyclo-((S)-Pro-(R)-Leu (4), and seco-((S)-Pro-(R)-Val) (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21, which was isolated from sea sediment in a mangrove site. The structure of the new compound was established on the basis of its spectroscopic data, including 1D and 2D NMR, HR-TOF-MS. Their antifungal activities against Candida albicans and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC50 value of 27.0 µg/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50 µg/mL.


Assuntos
Sedimentos Geológicos/microbiologia , Streptomyces/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fermentação , Humanos , Células MCF-7 , Metabolismo Secundário
13.
Mar Drugs ; 14(5)2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27153073

RESUMO

An actinomycete strain, H41-59, isolated from sea sediment in a mangrove district, was identified as Streptomyces anandii on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological and biochemical characteristics. Three new ergosterols, ananstreps A-C (1-3), along with ten known ones (4-13), were isolated from the culture broth of this strain. The gross structures of these new compounds were elucidated on the basis of extensive analysis of spectroscopic data, including HR-ESI-MS, and NMR. The cytotoxicities of these isolates against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268, and human lung cancer cell line NCI-H460 and their antibacterial activities in inhibiting the growth of Candida albicans and some other pathogenic microorganisms were tested. Compounds 3-8, 10 and 11 displayed cytotoxicity with IC50 values in a range from 13.0 to 27.8 µg/mL. However, all the tested compounds showed no activity on C. albicans and other bacteria at the test concentration of 1 mg/mL with the paper disc diffusion method.


Assuntos
Ergosterol/química , Streptomyces/química , Antibacterianos/química , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Ergosterol/farmacologia , Sedimentos Geológicos/microbiologia , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana/métodos , RNA Ribossômico 16S/genética , Streptomyces/genética
14.
Arch Virol ; 161(7): 1783-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27038825

RESUMO

Banana bract mosaic virus (BBrMV) has never been reported in banana plants in Hawaii. In 2010, however, it was detected in a new host, flowering ginger (Alpinia purpurata). In this study, we characterize the A. purpurata isolate and study its spread in flowering ginger in Hawaii. A laboratory study demonstrated that BBrMV could be transmitted from flowering ginger to its natural host, banana, therefore raising a serious concern about the potential risk to the rapidly growing banana industry of Hawaii. To quickly monitor this virus in the field, we developed a robust immunocapture reverse transcription loop-mediated isothermal amplification (IC-RT-LAMP) assay. Deep sequencing of the BBrMV isolate from A. purpurata revealed a single-stranded RNA virus with a genome of 9,713 nt potentially encoding a polyprotein of 3,124 aa, and another predicted protein, PIPO, in the +2 reading-frame shift. Most of the functional motifs in the Hawaiian isolate were conserved among the genomes of isolates from one found in the Philippines and India. However, the A. purpurata isolate had an amino acid deletion in the Pl protein that was most similar to the Philippine isolate. Phylogenetic analysis of an eastern Pacific subpopulation that included A. purpurata was closest in genetic distance to a Southeast Asian subpopulation, suggesting frequent gene flow and supporting the hypothesis that the A. purpurata isolate arrived in Hawaii from Southeast Asia.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Potyvirus/genética , /virologia , Sequenciamento de Nucleotídeos em Larga Escala , Índia , Filogenia , Potyvirus/classificação , Potyvirus/isolamento & purificação
15.
Front Plant Sci ; 6: 312, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999976

RESUMO

Velvet genes play critical roles in the regulation of diverse cellular processes. In current study, we identified the gene FocVel1, a homolog of Fusarium graminearum VelA, in the plant pathogenic fungus F. oxysporum f. sp. cucumerinum. This pathogen causes the destructive disease called cucumber Fusarium wilt (CFW), which severely affects the production and marketing of this vegetable worldwide. Transcript analyses revealed high expression of FocVel1 during conidiophore development. Disruption of the FocVel1 gene led to several phenotypic defects, including reduction in aerial hyphal formation and conidial production. The deletion mutant ΔFocVel1 showed increased resistance to both osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and prochloraz fungicides, which may be related to changes in cell wall components. In the process of biofilm formation in vitro, the mutant strain ΔFocVel1 displayed not only a reduction in spore aggregation but also a delay in conidial germination on the polystyrene surface, which may result in defects in biofilm formation. Moreover, pathogenicity assays showed that the mutant ΔFocVel1 exhibited impaired virulence in cucumber seedlings. And the genetic complementation of the mutant with the wild-type FocVel1 gene restored all the defects of the ΔFocVel1. Taken together, the results of this study indicated that FocVel1 played a critical role in the regulation of various cellular processes and pathogenicity in F. oxysporum f. sp. cucumerinum.

16.
FEMS Microbiol Lett ; 355(2): 142-51, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24810367

RESUMO

A defence response can be induced by nonpathogenic Fusarium oxysporum CS-20 in several crops, but the molecular mechanism has not been clearly demonstrated. In the present study, we analysed the defence mechanism of a susceptible cucumber cultivar (Cucumis sativus L. 9930) against a pathogen (F. oxysporum f. sp. cucumerinum) through the root precolonization of CS-20. A challenge inoculation assay indicated that the disease severity index (DSI) was reduced, ranging from 18.83 to 61.67 in comparison with the pathogen control. Root colonization analysis indicated that CS-20 clearly did not appear to influence the growth of cucumber seedlings. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) revealed that CS-20-mediated defence response was activated by PR3, LOX1 and PAL1 and the pathogen-mediated resistance response was regulated by PR1 and PR3. Moreover, both nonpathogenic and pathogenic F. oxysporum were able to upregulate NPR1 expression. In contrast to a pathogen, CS-20 can activate the Ca(2+) /CaM signal transduction pathway, and the gene expression of both CsCam7 and CsCam12 increased significantly. The gene expression analysis indicated that CS-20 strongly enhanced the expression of PR3, LOX1, PAL1, NPR1, CsCam7 and CsCam12 after inoculation. Overall, the defence response induced by CS-20 can be controlled by multiple genes in the cucumber plant.


Assuntos
Cucumis sativus/genética , Cucumis sativus/microbiologia , Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Agentes de Controle Biológico , Resistência à Doença/genética , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , RNA de Plantas/genética , Plântula/microbiologia , Transdução de Sinais
17.
Plant Dis ; 98(4): 436-442, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708726

RESUMO

Bacterial soft rot of banana was first noticed in 2009 in Guangzhou city, China. The disease also was observed on various banana cultivars of different genotypes in several other cities. Symptoms of the disease included leaf wilting, collapse of pseudostems, and unusual odor. Five isolated strains that fulfilled Koch's postulates were used for biochemical testing. The five strains were most similar to Dickeya dadantii or D. zeae, but were much less similar to D. paradisiaca when using several phenotype characteristics. Sequence analysis of 16S rDNA, dnaX, gryB, and recA of a reference strain revealed a similarity of 99% with the sequences of D. zeae, rather than D. paradisiaca. Phylogenic analysis of concatenated sequences of dnaX, gryB, and recA indicated that the banana strain constituted a distinguishable clade with several D. zeae strains involving rice pathogens D. zeae EC1 and ZJU1202 from Guangdong province, but the banana pathogen had several characteristics that distinguished it from the rice pathogens. Therefore, the banana pathogen was determined to be D. zeae. This is the first report of banana soft rot caused by D. zeae in China; however, the pathogen can infect other important crops.

18.
Genome Announc ; 1(3)2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23766402

RESUMO

We report a draft genome sequence of Dickeya zeae strain MS1, which is the causative agent of banana soft rot in China, and we show several of its specific properties compared with those of other D. zeae strains. Genome sequencing provides a tool for understanding the genomic determination of the pathogenicity and phylogeny placement of this pathogen.

19.
PLoS One ; 8(2): e56772, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437232

RESUMO

Quinoxaline-2-carboxylic acid (QXC) and 3-hydroxyquinaldic acid (HQA) feature in quinomycin family and confer anticancer activity. In light of the significant potency against cancer, the biosynthetic gene clusters have been reported from many different Streptomyces strains, and the biosynthetic pathway were proposed mainly based on the in vivo feeding experiment with isotope labeled putative intermediates. Herein we report another gene cluster from Streptomyces griseovariabilis subsp. bandungensis subsp. nov responsible for the biosynthesis of echinomycin (a member of quinomycin family, also named quinomycin A) and presented in vitro evidence to corroborate the previous hypothesis on QXC biosynthesis, showing that only with the assistance of a MbtH-like protein Qui5, did the didomain NRPS protein (Qui18) perform the loading of a L-tryptophan onto its own PCP domain. Particularly, it was found that Qui5 and Qui18 subunits form a functional tetramer through size exclusion chromatography. The subsequent hydroxylation on ß-carbon of the loaded L-tryptophan proved in vitro to be completed by cytochrome P450-dependent hydroxylase Qui15. Importantly, only the Qui18 loaded L-tryptophan can be hydroxylated by Qui15 and the enzyme was inactive on free L-tryptophan. Additionally, the chemically synthesized (2S,3S) ß-hydroxytryptophan was detected to be converted by the tryptophan 2,3-dioxygenase Qui17 through LC-MS, which enriched our previous knowledge that tryptophan 2,3-dioxygenase nearly exclusively acted on L-tryptophan and 6-fluoro-tryptophan.


Assuntos
Equinomicina/biossíntese , Streptomyces/metabolismo , 5-Hidroxitriptofano/metabolismo , Vias Biossintéticas , Clonagem Molecular , Ativação Enzimática , Genes Bacterianos , Hidroxilação , Família Multigênica , Mutação , Fases de Leitura Aberta , Peptídeo Sintases/metabolismo , Filogenia , Quinoxalinas/metabolismo , Streptomyces/genética , Especificidade por Substrato , Triptofano Oxigenase/classificação , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
20.
J Antibiot (Tokyo) ; 64(10): 661-665, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21847131

RESUMO

Two new antimycin antibiotics; that is antimycins A(19) (1) and A(20) (2), were isolated from a cultured broth of marine actinomycete Streptomyces antibioticus H74-18 together with antimycins A(1a) (3a) and A(1b) (3b), A(2a) (4), A(3a) (5a) and A(3b) (5b). Their structures were determined by spectroscopic methods in combination with X-ray diffraction. Antimycin A(19) possessed a chiral acyl chain and an alkyl branch. The absolute configuration of chiral acyl chain in 1 was determined by X-ray diffraction analysis. Antimycin A(20) (2) has the shortest and simplest acetoxy acyl chain in the antimycins family. All the antimycins (1-5) showed potential antifungal activities against Candida albicans with MIC of about 5-10 µg ml(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...